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ion-production cost w a s  reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion 
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Emphasis w a s  placed on optimizing the performance and 

Comprehensive Langmuir- 
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An ion-extraction performance study was conducted to assess the ef fact 

An assessment of the technology readiness of the J- 
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SUMMARY 

The Mercury Ion Thruster Technology program was an 

investigation for improving the understanding of state-of-the-art 
mercury-ion-thruster systems. This was accomplished by comparing 

and contrasting the performance characteristics of the present- 
generation ring-cusp thruster with the performance 

characteristics of the more-mature J-series thruster. Emphasis 

was placed on optimizing the performance and simplifying the 
design of the ring-cusp discharge chamber. The dominant 

attributes characterizing the high performance of the ring-cusp 
thruster were identified, interpreted, and compared with those of 

the J-series thruster. Additional emphasis was placed on 

improving ion-optics fabrication technology. A study was 
conducted to identify the effect of aperture size and 

displacement on ion-optics performance and thrust-vectoring 

characteristics. An assessment of the technology readiness of 
the J-series thruster was completed, and a simplified power 

processor was successfully used to operate an 8-cm-diameter 

thruster that is functionally equivalent to the Ion Auxiliary 
Propulsion System (IAPS) thrusters. 

The design of the ring-cusp discharge chamber was greatly 
simplified. A significant reduction in thruster mass was 
realized by eliminating the cathode magnet assembly and several 
magnet rings from t h e  original thruster design. Along with the 
design simplifications and reduction in mass, thruster 
performance was improved considerably; the baseline beam-ion- 
production cost of the optimized configuration was reduced to 
E ;  21 130 eV/ion. At a discharge propellant-utilization 

efficiency of 95%, the beam-ion-production cost was reduced to 

about 155 eV/ion, representing a reduction of about 40 eV/ion 
over the corresponding value for the J-series thruster. 

xi 



Comprehensive Langmuir-probe surveys were obtained to 

identify and correlate the performance characteristics of the 

ring-cusp thruster with the prevailing plasma processes occurring 

within its discharge chamber. These results were compared with 

similar measurements for the J-series thruster. A volume- 
averaging scheme was developed for analyzing the large volume of 
numerical data produced by Langmuir-probe surveys, allowing a 

quantitative and meaningful correlation of thruster performance 

with specific plasma processes characterizing the two thruster 
designs. Good correlation was obtained between thruster 
performance and the average Maxwellian-electron temperature of 
the discharge plasma. The average Maxwellian-electron 

temperature in the ring-cusp thruster was found to be as much as 

1 eV higher than it is in the J-series thruster. 
Significant advances were made in the materials-selection 

criteria, hydroforming and stress-relieving tooling, and 

fabrication procedures for ion-extraction assemblies. An ion- 
optics performance study was conducted to explore the influence 

of screen aperture size on ion-optics performance and to verify 
the effectiveness of a beam-vectoring model for three-grid ion 

optics. 
An assessment of the technology readiness of the J-series 

thruster concluded that the major remaining technology issue is 

baffle and pole piece erosion, with subsequent deposition of 
material onto the cathode keeper and its supporting structure. 
Cathode-heater reliability was judged tractable through adequate 

quality-control procedures. 
We successfully demonstrated the use of a simplified power 

processor to operate an 8-cm-diameter thruster that was 
functionally equivalent to the Ion Auxiliary Propulsion System 

(IAPS) thruster. 
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SECTION 1 

INTRODUCTION 

The goal of the Mercury Ion Thruster Technology program was 

to improve the understanding of mercury-ion-thruster systems, 

with primary consideration toward improving the technology and 

reliability of the state-of-the-art 30-cm-diameter J-series 

thruster. The present program extends the work that was 

performed under a previous investigation (NASA Contract NAS 
3-21943), in which preliminary performance-characterization and 

plasma-diagnostic measurements were conducted using a high- 

performance thruster that utilizes a ring-cusp magnetic- 
confinement geometry. Because of its inherent simplicity and 

demonstrated performance capability, the ring-cusp design is 

perceived as a candidate for a new generation of ion thrusters 
that offers a significant performance advantage over the present 
J-series thruster. 

The work performed under this program was conducted at 
Hughes Research Laboratories in Malibu, California. Appendix A 
describes the vacuum test facilities, instrumentation, and 

thruster diagnostics used in the thruster performance 
evaluations. Performance testing and plasma-diagnostic 

measurements were performed using a 30-cm-diameter laboratory- 

model ring-cusp discharge chamber, in addition to a J-series 
thruster (S/N J2). Details of these thruster designs are 
presented in Section 2 of this report. 

1.1 PROGRAM GOALS 

Emphasis was placed on optimizing the performance and 
simplifying the design of the ring-cusp discharge chamber. To 
aid in this effort, we performed detailed documentation of the 
performance, discharge characteristics, and plasma properties in 
several ring-cusp chamber geometries. Similar measurements were 
performed in a J-series thruster for comparison with the ring- 

cusp results. The objective was to understand the mechanisms 

1 



that prevail in the high-performance ring-cusp discharge chamber, 
with an eye toward incorporating those attributes of the ring- 
cusp design that result in its high performance into the more- 
mature J-series thruster. Other objectives were to improve ion- 
optics fabrication technology and to demonstrate the operation of 
a flight-type thruster using a simplified power processor. Both 
areas have direct impact on improving the reliability of the J- 
series thruster, as well as on future thruster designs. 

1.2 PBOGBAbl ACCOMPLISHMENTS 

The design of the ring-cusp discharge chamber was greatly 
simplified through the elimination of its cathode magnet and 
several of the original magnet rings.*" 
simplifications and reduction in mass, the performance of the 
discharge chamber was improved considerably. The baseline beam- 
ion-production cost of the optimized configuration was reduced to 
E ;  21 130 eV/ion. At a discharge-propellant-utilization 
efficiency of (q,d)unc = 95%, the beam-ion-production cost was 
reduced to about 155 eV/ion, representing a reduction of about 
40 eV/ion over the corresponding value for the J-series thruster. 

Along with the design 

Comprehensive Langmuir-probe surveys were conducted for the 
first time in a J-series thruster. The plasma properties derived 
from these measurements, along with similar results obtained from 
the ring-cusp thruster, provided valuable insight into the 
dominant ion-production processes that prevail in their discharge 
chambers. Both plasmas were found to be characterized by a two- 
group distribution of electrons, and average values of the 
electron energies and densities were defined in such a manner as 
to make them useful in comparing the performance characteristics 
of the two thrusters. 

The technology for fabricating ion-extraction electrodes was 
improved considerably. Materials specifications have been 
determined which should ensure successful and reproducible 
fabrication of electrodes. The hydroforming and stress-relieving 
fixtures that are used in fabricating electrodes for both two- 
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and three-grid ion-optics assemblies were modified to ensure 

better results during these critical operations. Procedures for 
dishing and assembling electrodes were refined and documented. 
As a result of the advances in these three areas (materials- 
selection criteria, hydroforming and stress-relieving tooling, 

and fabrication procedures), Hughes was able to make a critical 

commitment to develop an ion-propulsion system for the 
International Telecommunications Satellite Organization 

(INTELSAT) that utilizes a three-grid ion-extraction assembly. 
An assessment of the technology readiness of the J-series 

thruster concluded that the major remaining technology issue is 

baffle and pole piece erosion with subsequent deposition of 
material onto the cathode keeper and its supporting structure. 

Other minor issues, such as cathode-heater reliability, were 

judged to be tractable through adequate design and quality- 
control procedures. 

A simplified power processor (that was developed under a 
Hughes IR&D project) was used to operate an 8-cm-diameter 
thruster that is functionally equivalent to the Ion Auxiliary 
Propulsion System (IAPS) thrusters. Steady-state performance 
measurements obtained while operating the thruster with a 

standard power processor and the simplified unit were essentially 
identical. Application of at least some of the technology used 
in the simplified approach has been use in a power processor that 
Hughes developed for use under the INTELSAT development program. 

3 



SECTION 2 

RING-CUSP DISCHARGE-CUMBER TECHNOLOGY 

As a result of its high level of performance and inherent 
simplicity, the ring-cusp thruster is perceived as a potential 
replacement for other well-optimized designs such as the 
divergent-field J-series thruster. In the remainder of this 
section, we present the results of an in-depth investigation of 
the original ring-cusp configuration"' to optimize its 

performance and better understand its operating characteristics. 

2.1 DESIGN FEATURES 

The ring-cusp and J-series thrusters differ primarily in the 

design and performance of their discharge chambers. Major 
differences include the magnetic-field distribution used to 

confine the discharge-chamber plasma, as well as the distribution 
of anode- and cathode-potential surfaces that define the 
discharge-chamber boundary. A detailed description of the 
evolution of the 30-cm-diameter ring-cusp thruster described 

herein is presented in Appendix B. Figure 2-1 shows a schematic 
diagram of the laboratory-model thruster. For comparison, a 
schematic of the 30-cm-diameter J-series thruster2'2p 2 - 3  is also 

presented. 
The ring-cusp discharge chamber is constructed of a 

cylindrical sidewall and circular endwall, both of which are 
magnetic and maintained at anode potential. The cathode and 

screen electrode are the only electrodes operated at cathode 

potential. In addition, the cathode and cathode keeper are 
positioned in the discharge chamber with no protective structure 
surrounding them. The discharge chamber of the J-series 
thruster, by contrast, is comprised of two non-magnetic metal 

parts; a circular endwall and a cylindrical outer shell which are 
operated at cathode potential, and an inner cylindrical liner 
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which is operated at anode potential. The cathode is surrounded 
by a magnetic-baffle coil that can be energized to control the 

current-flow impedance between the cathode and main-discharge 

plasmas. The entire cathode assembly (consisting of the cathode 
and cathode keeper) is located within a baffle/pole-piece 
assembly which isolates the cathode and main-discharge plasmas. 

The magnetic-field distribution within the ring-cusp 
discharge chamber is generated by three samarium-cobalt (SmCoS) 

permanent-magnet rings; two rings on the cylindrical sidewall and 
a circular ring on the endwall. In the laboratory-model 

thruster, the two sidewall magnet rings consist of a single layer 

of magnets, while the endwall ring has a double layer to increase 
the magnetic field strength. The individual magnets are 

rectangular in shape (1.9-cm-long by 1.27-cm-wide by 0.5-cm-high, 

and magnetized along the short dimension) and are held in place 
only by the magnetic attraction to the soft-iron boundary of the 

discharge chamber. The magnetic field at the surface of the 
magnets is about 2.5 kG, and their maximum operating temperature 
is about 3OOOC (above this operating temperature, irreversible 
loss of field strength occurs). The soft-iron chamber boundary 

provides a low-reluctance path for closing the magnetic-flux 
lines. 

The magnetic-field distribution within the J-series 

discharge chamber is generated by axial and radial permanent 
magnets arranged along the outside of the chamber. The maximum 
operating temperature of the Alnico magnets used in the J-series 
thruster is much higher (Z750OC) than it is for the SmCoS magnets 
used in the ring-cusp thruster. However, the magnetic-field 

strength near the Alnico magnet faces is significantly lower 
(2100 G). In addition, the discharge-chamber boundary of the 
J-series thruster serves as a structural member and is not a part 
of the magnetic circuit. 

7 



Documentation of the magnetic-field distribution within the 
ring-cusp discharge chamber included measurements of the vector 
components of the field, as well as the shape of the flux lines. 
The scalar field was obtained by measuring the axial and the 

radial components (B, and B,) of the magnetic field in the 
centerline plane of the discharge chamber, and then computing the 
scalar magnitude as (BZ2 + B r 2 ) ' 1 2  for each measurement point. 
The vector nature of the magnetic field was documented by using 
powdered iron to trace out the lines-of-force in the field. 

Figure 2-2 compares the scalar-magnetic-field distribution 

for the ring-cusp and J-series thrusters. These results indicate 

that the most significant feature of the ring-cusp design is the 
existence of strong magnetic fields along the boundaries of its 
discharge chamber. By contrast, the J-series thruster exhibits a 

much weaker and nearly uniform scalar magnetic-field 
distribution. 
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FIGURE 2-2. Scalar magnetic field distribution comparison. 

8 

I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 



9 

The vector-magnetic-field distributions indicated by iron 
filing patterns in Figure 2-3 demonstrate the cusp nature of the 
magnetic-field distribution within the ring-cusp thruster and the 

divergent nature of the magnetic-field distribution within the 
J-series thruster. The cathode in the ring-cusp thruster is 
located in the endwall-cusp region, with a magnetic-field 

strength at the cathode orifice on the order of 100 G. By 
comparison, in the J-series thruster the cathode is located in a 
nearly magnetic-field-free region. Discharge-chamber design 

criteria determining the shape and magnitude of the magnetic 
field required for optimum performance of the ring-cusp thruster 

were explored in detail and the results are reported under a 
separate research program. * - ' 

2.2 PERFORMANCE CHARACTERISTICS 

Figure 2-4 presents the performance of the 30-cm-diameter 
mercury ring-cusp thruster for a beam current of 2 A and a 
discharge voltage of 32 V (the standard operating conditions for 
the results presented in this report). The discharge-propellant- 

utilization efficiency has not been corrected for doubly charged 
ions. For comparison, similar measurements obtained for a 30-cm- 
diameter J-series thruster (S/N J2) are also presented to show 
the significant performance improvement that has been achieved 

with the optimized ring-cusp thruster. Figure 2-4 shows a 
performance improvement of about 40 eV/ion for the ring-cusp 
thruster operating at a propellant-utilization efficiency of 95%. 

2.3 OPEBATING CHARACTERISTICS 

The strong magnetic fields at the boundary of the 
ring-cusp discharge chamber (see Figure 2-2) inhibit energetic 
electrons from reaching the anode-potential surfaces anywhere 

except in the cusp regions of the magnetic field defined by the 
three magnet rings. 
crossing the magnetic-flux lines that connect adjacent magnet 

Energetic electrons are prevented from 
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rings by the large values of JBdl (typically on the order of 
1000 Gauss-cm) . - J -' J - ' Low-energy electrons cross the field 
lines more readily due to their much higher coulomb-collision 
cross section. 

The electron current that sustains the discharge is 
influenced by the strong fields and small dimensions of the 
magnet cusps. It has been shown experimentally 2-8~2-Q~2-10that 
the effective area for electron collection at the cusps of the 
magnets is larger for low-energy electrons than it is for high- 
energy primaries. The ratio of these areas is found to agree 
with the ratio of the hybrid cyclotron radius, 
primary-electron cyclotron radius, rp. Therefore, the low-energy 
electrons tend to be preferentially "filtered out" in the 
magnetic cusps. The net result in the ring-cusp thruster is that 
plasma electrons bound to magnetic field lines that intersect the 
anode are reflected from the magnetic cusps due to mirror effects 
and limited conduction area. In this manner, the efficient 
confinement of ionizing plasma electrons is obtained. 

(reri) ' I 2 ,  to the 

Ions produced in the discharge chamber preferentially drift 
to the ion-extraction assembly at the ion-acoustic or Bohm 
velocity. '-11~'-12 The magnetically shielded anode-potential 
surfaces within the discharge chamber limit the amount of ion 
loss. Both analyti~al'"~ and e~perirnental'-'~~~-~' 
investigations have shown that the ion-arrival rate at these 
surfaces is consistent with the ions having a velocity close to 
that of the slow-moving neutrals. With nearly all the discharge- 
chamber volume bounded by magnetically shielded anode-potential 
surfaces, ion loss within the ring-cusp discharge chamber is 
relatively low. 

By comparison, the plasma in the J-series thruster is 
confined by a divergent magnetic field. Electrons must diffuse 
across magnetic field lines before being collected by the anode. 
Furthermore, electrons bound to magnetic-field lines that 
intersect the anode will be lost at that surface. 
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The discharge-chamber configuration in the J-series thruster 

is similar to conventional Penning discharge chambers, comprised 
of a combination of cathode-potential surfaces and magnetically 

shielded anode-potential surfaces. The endwall surface is a 
magnetically shielded cathode-potential surface and represents a 

substantial fraction of the total surface area of the discharge 
chamber. Magnetically shielded cathode-potential surfaces in 

general represent a greater loss-mechanism for ions than do 
magnetically shielded anode-potential surfaces.*'13 
account for higher ion-loss rates within the J-series discharge 

chamber and an accompanying reduction in thruster performance. 

This can 

The description given above of ring-cusp thruster operation 
was verified by comprehensive measurements of the discharge- 

chamber plasma properties and current-flow measurements to the 

anode- and cathode-potential surfaces defining the discharge- 
chamber boundary. These results are presented in the material 

that follows. 

2.3.1 Plasma Properties 

Under this program, we developed a technique for correlating 
the dominant plasma processes occurring within the discharge 
chamber with observed thruster performance. Average values of 
the Maxwellian-electron temperature and density, as well as the 

primary-electron energy and density, were computed and correlated 
with thruster performance. A detailed description of this 
technique, including a comparison of the average plasma 
properties for the ring-cusp and J-series thrusters is presented 
in Reference 2-15. 

Figure 2-5 shows the variation of the average primary- 
electron fraction (ratio of primary-electron density to plasma 
density) with beam-ion-production cost for both the ring-cusp and 
J-series thrusters. For comparison, performance measurements f o r  
these thrusters are also shown. (The propellant-utilization data 

of Figure 2-5 have been corrected for doubly charged ions, since 
the theory developed to compute the volume-averaged plasma 

properties does not account for multiply ionized atoms.) 
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The ring-cusp thruster maintains a higher primary-electron 

fraction than the J-series thruster as the beam-ion-production 

cost is lowered, demonstrating its superiority in confining 

primary electrons. Although the density of primary electrons is 
low (varying from 1% to 3%), it can be shown that the primaries 
are responsible for about 15% of the total ion 

The Maxwellian electrons are responsible for the balance of 
the ion production. Figure 2-6 shows measurements of the 
spatially varying Maxwellian-electron temperature for the ring- 
cusp and J-series thrusters. The electron temperature is 

constant along the magnetic-field  line^^-'^^^-^' in both 
thrusters, and the isotherms have very nearly the same shape as 

the magnetic-field lines. This suggests that there is good 
plasma confinement for both thrusters. However, the electron 

temperature in the ring-cusp thruster is significantly higher. 

Figure 2-7 shows the variation of the average Maxwellian-electron 
temperature with beam-ion-production cost for both the ring-cusp 

and J-series thrusters. These results indicate that as the beam- 

ion-production cost is reduced, the ring-cusp thruster maintains 

an average Maxwellian-electron temperature that is about 1 eV 
higher than it is in the J-series thruster. The 1-eV increase 
evident in Figure 2-7 is substantial, especially considering that 
it represents an increase over the total volume of the ion- 
production region. A higher Maxwellian-electron temperature 
indicates more-efficient confinement of this species. 

The results shown in Figures 2-6 and 2-7 indicate that the 
ring-cusp discharge chamber is more efficient in confining 
plasma, and this helps to explain the performance improvement 
over the J-series thruster. Calculations of the ion-production 

rate (ionization collision frequency) within the discharge 
chamber further demonstrate the effectiveness of the ring-cusp 
design in confining the discharge plasma. Figure 2-8 shows 
contours of the ionization collision frequencies (accounting for 

15 
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both Maxwellian and primary electrons) calculated from plasma 

properties measured in the ring-cusp discharge chamber. The 

contour lines have been normalized with respect to the maximum 

collision frequency. The solid line represents the boundary of 
the ion-production region, which is defined as the contour line 
that encloses 95% of the total ionization occurring within the 
discharge chamber.2"6 This boundary also has very nearly the 
same shape as the magnetic-field lines (shown by dotted lines) 

used to confine the plasma. 

The ion-production region is seen to be defined by the three 
magnet rings. The region of highest ion production extends from 
the axial location of the sidewall magnet ring to the axial 
location of the magnet ring nearest the ion-extraction assembly. 
Very little ion production occurs near the upstream location of 
the endwall magnet ring or near the magnetically shielded anode- 

potential sidewall/endwall boundary surfaces. 

Having established where ions are produced, the plasma- 

potential distribution can be used to infer the direction of ion 

flow within the discharge chamber. Because of their large 
cyclotron radii, ions are influenced more by electric fields than 

they are by magnetic fields, with the electric fields produced by 

gradients in the plasma potential. Figure 2-9 shows contours of 
the plasma potential; there is about a 3 V drop in plasma 
potential between the region of highest ion production (cf. 
Figure 2-8) and the ion-extraction assembly. It is possible to 
infer from this gradient the presence of ion-accelerating 
potentials that result in directed ion transport away from 
regions of maximum ion production. 

The concept of directed ion transport at the Bohm 
velocity has been studied and verified by several researchers. 
2 -  ' ' ' 2 -  ' 
to the ion-extraction assembly by correlating the measured beam 
profile (as inferred by measurements obtained by sweeping a 

Faraday probe through the ion beam) with the calculated ion flux 
to the screen electrode of the ion-extraction assembly. The ion 

- '' We explored the concept of directed ion transport 
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flux was obtained using the locally measured electron density and 
temperature, and invoking the assumption that the ions approach 

the ion-extraction assembly with the Bohm velocity. The 
calculated ion flux to the screen electrode is plotted along with 

a (typical) measured ion-beam profile in Figure 2-10; good 
correlation is indicated. 

The ion-beam profile was found to decrease in uniformity as 

the beam-ion-production cost was increased. Figure 2-11 presents 

measured beam profiles that show a decrease in ion-beam 
uniformity as the ion-production cost increases. This effect is 
consistent with plasma properties measured within the discharge 

chamber, which indicate that the ion-production rate in the 

center of the discharge chamber increases with beam-ion- 
production cost. 

It should be noted here that plasma potentials negative of 

anode potential were not observed in any operating mode of the 
ring-cusp thruster; the locally measured plasma potential was 

always positive of anode potential. 

2.3.2 Current Distribution 

The ion and electron currents flowing to the anode- and 

cathode-potential surfaces of the discharge chamber were measured 
and correlated with thruster operation. 
covered by a thin isolated cover that permitted t h e  current 

collected by each cusp to be monitored. A diagram showing the 
measurement location of various electrode currents and voltages 
is shown in Figure 2-12. A list of symbols and definitions is 
provided in Table 2-1. 

Each magnet ring was 

2.3.2.1 Anode-Potential Electrodes. The anode-potential 

interior of the discharge chamber shown in Figure 2-12 consists 
of five separate surfaces to which electron and ion currents can 
flow. Anodes labeled screen, sidewall, and endwall are the 

current-collecting surfaces for the screen, sidewall, and endwall 
magnet rings, respectively. The plenum and the sidewall/endwall 
comprise the remainder of the anode-potential surfaces. The 

cathode-potential interior of the discharge chamber consists of 
the cathode and screen electrode. 
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v b  

J b  

VA 

JA 

Jd 

JE 

JP I 

JS C 

JS A 

J S W A  

JS E 

JE A 

VD 

v, 
VN K 

JN K 

vC K 

J C  K 

’Ind 

( ‘ Indl  u n c 

TABLE 2-1. Definitions of Symbols 

Beam Voltage 

Beam Current 

Accelerator Voltage 

Accelerator Current 

Decelerator Electrode Current 

Cathode Emission Current 

Current Collected by Plenum 

Current Collected by Screen Grid 

Current Collected by Screen Anode 

Current Collected by Sidewall Anode 

Current Collected by Sidewall/Endwall 

Current Collected by Endwall Anode 

Discharge Voltage 

Neutralizer Coupling Voltage 

Neutralizer Keeper Voltage 

Neutralizer Keeper Current 

Cathode Keeper Voltage 

Cathode Keeper Current 

Beam-Ion-Production Cost 

Discharge Propellant-Utilization 
Efficiency 
(Corrected for Doubly Charged Ions) 

Discharge Propellant-Utilization 
Efficiency 
(Uncorrected for Doubly Charged Ions) 
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Figure 2-13 shows the variation of the net currents 
collected by the five anode-potential surfaces as a function of 

cathode-emission current. The variation of total anode current 
(the sum of the individual anode currents) is also presented, 
showing good agreement with the variation of the sum of the beam 

and cathode-emission currents; all net currents are 

satisfactorily accounted for. 
The plenum and sidewall/endwall each collect a small ion 

current, which is on the order of 10 mA for the plenum and 70 mA 

for the sidewall/endwall. For clarity, the sum of these two 
currents is shown in Figure 2-13. By contrast, the screen, 

sidewall, and endwall anodes collect net-electron current. These 

results suggest excellent electron confinement to the three 

magnet r.ings that define the cusp regions of the magnetic field. 
The screen and sidewall anodes collect the majority (280%) of the 
electron current, independent of the cathode-emission current. 
This is due to the location of these two electrodes within the 
ion-production region; the axial location of the sidewall anode 
coincides with the region of highest ion production (cf. 

Figure 2-S), while the axial location of the screen anode 
coincides with the downstream end of the ion-production region 
near the ion-extraction assembly. For all but the screen anode, 
the net-electron current increases with cathode-emission current. 

The net-ion current collected by the sidewall/endwall and 
plenum surfaces w a s  determined by simultaneously biasing these 

surfaces negative with respect to the remaining anode-potential 
surfaces. The results are shown in Figure 2-14, indicating that 

the net-ion current flowing to the combined sidewall/endwall- 
plenum surface varies from about 140 d to 150 mA as the cathode- 
emission current decreases from 12 A to 9 A ,  while the net- 

electron current varies from about 70 mA to 80 mA. The ion 
current saturates at a relatively low value of applied bias 
voltage (2 2 V), confirming that the electrons flowing to the 

sidewall/endwall-plenum surface have low energy. 
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The sidewall/endwall-plenum satisfies the definition of a 

magnetically shielded anode-potential surface. The small current 

of low-energy electrons collected by this surface affirms the 
confinement of high-energy electrons to the cusp regions of the 
magnetic field. The small ion current collected by this surface 

is consistent with the concept of reduced ion transport to a 
magnetically shielded anode-potential surface.*’13 

did not measure the ion loss to the three magnet-ring covers, 

Kaufman’s model of reduced ion transport to magnetically shielded 

anode-potential surfaces can still be used to infer a small ion 

loss to the cusps as well. 

Although we 

2.3.2.2 Cathode-Potential Electrodes. The cathode and 

screen electrode are the only cathode-potential surfaces within 

the discharge chamber. The screen electrode is a loss surface 
for ions as well as energetic electrons capable of overcoming the 
potential difference between it and the plasma. 

The ion current flowing to the screen electrode was 
determined by biasing it negative with respect to the cathode. 
The saturated ion current measured in this manner was 500 mA when 

the beam current was 2 A, implying an ion transmission of 80% for  
the particular ion-extraction assembly used in the test 
(S/N 914). The beam and accel electrode voltages were +1200 V 
and -350 V, respectively. 

Measurements of the variation of net screen-electrode 

current with cathode-emission current (beam-ion-production cost) 

were obtained with the screen electrode connected to cathode 

through an ammeter. Figure 2-15 shows that as the cathode- 
emission current is reduced, the current collected by the screen 
electrode undergoes a transition from net-electron current to 

net-ion current. (For comparison, calculations of the volume- 

averaged Maxwellian-electron temperature shown previously in 
Figure 2-7 are included also). This behavior can be understood 

by considering the Maxwellian energy-distribution functions for 

electron temperatures corresponding to thruster operation above 
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and below the current-collection transition point shown in Figure 
2-15. The energy-distribution functions for various electron 
temperatures are shown in Figure 2-16; by integrating the 
distribution function over the appropriate limits, one can 
compute the fraction of electrons having energies in excess of a 
specified value. For our purposes, we specify this value as 
30-eV; approximately the plasma potential within the discharge 
chamber. Figure 2-17 presents results of calculations to show 
(as a function of temperature) the fraction of electrons that 
have energies in excess of 30 eV; this fraction increases from 
less than 1% for a 5-eV temperature to about 4% for a 7-eV 
temperature. Therefore, the transition from net-ion to net- 
electron current collection by the cathade-potential screen 
electrode can be understood to occur when the cathode-emission 
current is increased to the point that the electron temperature 
near the screen electrode exceeds about 4 eV. The volume- 
averaged electron temperatures presented in Figure 2-15 support 
this argument. 

Correlation of the net current collected by the screen 
electrode with the Maxwellian-electron temperature suggests that 
this measurement can be used as a simple and fast diagnostic to 
compare the Maxwellian-electron temperature for different 
operating conditions. We utilize this technique in the sections 
that follow. 

2 . 4  ANODE EFFECTS 

We extended our study of current collection to the anode- 
potential surfaces within the discharge chamber by exploring the 
effect each anode surface has on influencing thruster 
performance. This was accomplished by allowing each separate 
anode surface to electrically float by disconnecting it from the 
discharge power supply. In this manner, the electron current 
collection could be redistributed to the various anode surfaces, 
in an attempt to effect a redistribution of the ion-production 
volume. 
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2.4.1 Endwall Anode and Plenum Floating 

Figure 2-18 shows the measured variation of current 
collected by the various anode-potential surfaces (with the 
endwall anode and the plenum disconnected from the discharge 
power supply) as a function of cathode-emission current. The 
plenum and endwall anode comprise a relatively large portion of 
the endwall area. Compared to the usual case where all anode- 
potential surfaces are connected together (cf. Figure 2-13), the 
current collected by the screen anode changes by only a small 
amount. The current collected by the sidewall anode, however, 
increases by the amount that previously flowed to the plenum and 
endwall anode. The sidewall anode collects the majority of the 
current over a wide range of cathode-emission current. 

The effect of electrically floating the various anode 
surfaces on discharge-chamber performance can be estimated from 
measurements of accelerator-electrode current and beam-ion- 
production cost. This is a fast and reliable technique to infer 
thruster performance. For thruster operation at high beam-ion- 
production cost, the neutral loss rate approaches a 
but as the beam-ion-production cost is reduced to its baseline 
value, the neutral loss rate increases. Since the accel current 
is directly proportional to the neutral loss rate, the variation 
of accel current with beam-ion-production cost can be used as an 
absolute indication of baseline beam-ion-production cost  and as a 
relative indication of maximum discharge chamber propellant- 
utilization efficiency. 

Figure 2-19 shows that there is very little change in the 
overall thruster performance when the endwall anode and the 
plenum are allowed to float. Furthermore, by floating the 
endwall anode and the plenum, the current collected by the 
sidewall anode, which is located in the region of maximum ion- 
production (cf. Figure 2 - 8 ) ,  increases by 201,  yet this results 
in no significant change in (inferred) thruster performance. 
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Figure 2-20 shows the floating potential (relative to 

cathode potential) of the endwall anode and the plenum as a 
function of cathode-emission current. For comparison, anode 

potential is indicated as a dashed line. The endwall anode 

floats close to cathode potential, while the plenum floats near 

anode potential. This is understandable since the plenum is well 
shielded by the magnetic field and li’es outside of the ion- 
production region; therefore, it collects little current. The 

endwall anode, on the other hand, defines the upstream boundary 

of the ion-production region (cf. Figure 2-8) and normally 
collects a substantial current. When this electrode is allowed 
to float, it must charge to a negative potential to balance the 

incident electron and ion currents. In addition, the floating 

potential of both the plenum and endwall anode decreases with 
increasing emission current. The floating potential is directly 
proportional to the electron temperature, which increases with 

cathode-emission current. Therefore, the floating potential 

becomes more negative with respect to plasma (anode) potential as 
the cathode-emission current is increased. 

2.4.2 Screen Anode Floating 

Figure 2-21 shows the net current collected by the anode 
surfaces for the case where the screen anode is allowed to float. 

Comparison with Figure 2-13 indicates that the electron current 
collected by the sidewall anode increases approximately by the 

amount of electron current that previously flowed to the screen 

anode. The current collected by the endwall anode remains 

essentially unchanged, and the plenum and sidewall/endwall 

collect net-electron current. 

Figure 2-22 shows the effect on thruster performance (as 
inferred from the variation of accelerator-electrode current with 
beam-ion-production cost) of floating the screen anode. There is 
a significant reduction (“12 eV/ion) in the baseline beam-ion- 

production cost and an indication of improved discharge-chamber 
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propellant-utilization efficiency. The net-electron current 

collected by the plenum and sidewall/endwall could be due to a 

reduction in ion loss to these surfaces or to an increase in 

electron temperature. In the section below, we will show that 
the Maxwellian electron temperature increases significantly 

throughout the discharge chamber plasma when the screen anode 

floats. Figure 2-23 shows the floating potential of the screen 
anode as a function of cathode-emission current. 

The reason for the observed performance improvement with the 

screen anode floating is believed to be an effect of reducing the 

electron-collecting anode area. The screen anode is located at 

the downstream end of the ion-production region (cf. Figure 2-8), 
where it collects a substantial electron current. Since floating 

the screen anode restricts electron flow to this electrode, the 
effective anode area within the ion-production region is reduced. 
The role of anode area on the performance of ion thrusters has 

been studied in the past by several 

According to their results, a reduction in the anode area could 

cause an increase in the electron temperature and, therefore, an 

improvement in thruster performance. We explored the validity of 
this model by obtaining Langmuir-probe measurements of the 
discharge-chamber plasma properties for thruster operation with 
and without the screen anode floating. Calculated values of the 
volume-averaged Maxwellian-electron temperature are shown in 
Figure 2-24, along with measurements of the net current collected 
by the screen electrode. The net current increase to the screen 
electrode is correlated with an increase in electron temperature. 

This result is consistent with the performance improvement 

suggested by the results shown in Figure 2-22. 

* - 1 9  

2.4.3 Sidewall Anode Floating 

Floating the sidewall anode resulted in a loss in thruster 
performance. It was found, for example, that for thruster 

operation at a beam-ion-production cost of 192 eV/ion, the 
accelerator-electrode current was well in excess of 10 mA (as 
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compared to the usual value of about 3.5 m A ) ;  therefore, further 

study of this case was ruled out. We interpret these results as 

indicating that the sidewall anode is the most important 

electrode affecting discharge-chamber processes. This finding is 
consistent with the results of Figure 2-13, which show that since 
the axial location of the sidewall anode coincides with the 
region of highest ion production, it collects most of the 
electron current. 

2.4.4 Sidewall/Endwall Floating 

Results presented in Figure 2-13 showed that net-ion current 
is collected by the plenum and sidewall/endwall. Furthermore, 
the results of Figure 2-14 indicated that the ion current 
collected by the sidewall/endwall-plenum surface is about twice 

as large as the electron current that is collected. 
. Figure 2-25 shows the variation of the sidewall/endwall 

floating potential with cathode-emission current. The floating 

potential is positive with respect to the three anode-potential 

magnet-ring covers because net-ion current is collected by this 
surface during normal operation. The effect on thruster 
performance of electrically floating the sidewall/endwall is 

presented in Figure 2-26, which shows about a 6-eV/ion reduction 
in the baseline beam-ion-production cost. We attribute the 

increased performance to the fact that the sidewall/endwall 
floats at a positive potential with respect to the other anode 
surfaces and, therefore, has a tendency to impede ion loss to 
that surface. 

2.4.5 Sidewall/Endwall-Plenum B i a s  

We explored the performance improvement associated with 

floating the sidewall/endwall-plenum surface by biasing these 

surfaces positive with respect to the screen, sidewall, and 
endwall anodes. The power-supply arrangement shown in 
Figure 2-27 was used in the bias experiments. Biasing the 
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sidewall/endwall-plenum surfaces positive with respect to the 

anode-potential magnet-ring covers is a technique known as 

ttelectrostatic plugging" which has been used by several 
2 - 2 1  to improve the performance of electron- 

bombardment-type ion sources. 
With the currents measured as indicated in Figure 2-27, the 

beam-ion-production cost was calculated using the expression 

E ;  = - T +  

Jb J b  

Thruster performance measurements (uncorrected for  doubly- 
charged ions) were obtained for various bias voltages. 
Figure 2-28 shows the results for a bias voltage of 
VBIAs = 4.5 V. There is a reduction in the baseline beam-ion- 

production cost of about 10 eV/ion and an increase in maximum 
discharge-propellant-utilization efficiency of about 5%,  thus 
verifying the performance-enhancement technique. No additional 
performance gains were observed by increasing the bias voltage to 
values as high as VBIAS = 11 V. 

Measurements were performed to determine whether the 
separate effects of biasing the sidewall/endwall and additionally 
floating the screen anode, were additive (separately, each effect 
was shown to reduce the baseline beam-ion-production cost by 
about 10 eV/ion). Figure 2-29 shows the effect of biasing the 
sidewall/endwall surface 8 V positive with respect to the other 
anode surfaces, in addition to electrically floating the screen 
anode. The results indicate that the effects are not additive. 

For comparison purposes, the separate cases when the screen anode 
floats, the sidewall/endwall floats, and the case when all the 
anodes are connected are also shown. 
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2.5 OPERATION AT REDUCED DISCHARGE VOLTAGE 

The primary wearout mechanism in ion-thruster discharge 
chambers is believed to be sputter erosion of the cathode- 

potential surfaces. Therefore, thruster operation at reduced 

discharge voltage could significantly alter this wearout 

mechanism. Because the ring-cusp thruster exhibits such a high 

level of performance, we explored operation at reduced discharge 
voltage as a means of minimizing internal sputtering and 

extending lifetime. 

We evaluated the performance of the ring-cusp thruster 
operating at several different discharge voltages. The results 

are presented in Figure 2-30, which shows the variation of 
discharge-propellant-utilization efficiency (uncorrected for 

doubly charged ions) with discharge voltage. The results 

indicate that the ring-cusp thruster can be operated at a 
discharge voltage as low as 24 V, while maintaining a 
performance commensurate with that of the J-series thruster. The 

lifetime that can be expected with reduced discharge voltage was 
calculated using the screen-grid lifetime model developed under 

NASA Contract NAS 3-21040. Figure 2-31 shows the results of the 

calculations (they have been normalized to the value 
corresponding to a discharge voltage of VD = 32 V), which predict 

a factor-of-three increase in the lifetime of the screen 

electrode for a discharge voltage of 24 V. 

2.5.1 Sidewall/Endwall-Plenum Bias 

The effect of biasing the sidewall/endwall-plenum surface to 
improve thruster performance was further exploited to enable 

superior thruster performance at reduced discharge voltage. 

Significant lifetime benefits have been shown to be realized by 

reducing the discharge voltage down to the 24-26 V range, with 
some loss in performance. Therefore, we investigated biasing the 
sidewall/endwall surface as a means of regaining thruster 
performance at reduced discharge voltage. 
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Figure 2-32 shows the variation of accelerator-electrode 
current with beam-ion-production cost for different discharge and 
sidewall/endwall-plenum bias voltages. The results demonstrate 

the performance enhancement that can be achieved, and they 

suggest that the discharge voltage can be reduced to as low as 
26 V with only a slight penalty in beam-ion-production cost and 

discharge-propellant-utilization efficiency. This could result 
in a substantial increase in chamber lifetime (at nearly the same 

efficiency), as a result of reduced ion-sputtering. 
Using our optical-spectroscopy molybdenum-line- 

intensity measurements (for fixed plasma conditions, the 
molybdenum line intensity is proportional to the sputtering rate 

of the screen electrode) were obtained to assess the lifetime 

impact of thruster operation at reduced discharge voltage (with a 

bias applied to the sidewall/endwall-plenum). Two operating 
modes were studied and compared; 32-V discharge with no bias on 
the sidewall/endwall-plenum, and 26-V discharge with 6-V bias on 
the sidewall/endwall-plenum. Figure 2-33 shows the measured 
variation of molybdenum-line-intensity and accelerator-electrode 

current with beam-ion-production cost for the two modes of 

operation. The molybdenum line intensity for the 26-V discharge, 
6-V bias mode is 2 to 3 times less than it is for the 32-V, 
unbiased mode. On the basis of the screen-electrode lifetime 
predictions shown previously in Figure 2-31, the factor-of-two 
reduction in the molybdenum line intensity for t h e  26-V, 6-V b i a s  

mode is consistent with an increase in screen-electrode lifetime. 
We verified that thruster operation at V, = 26 V with a 6-V 

bias on the sidewall/endwall-plenum resulted in reduced plasma 
potential at the screen electrode, by probing the plasma on 
thruster centerline just upstream of the screen electrode. The 

results are presented in Figure 2-34, verifying that the plasma 
potential is reduced by about 5 V. This result is consistent 

with the observed decrease in molybdenum-line-intensity 
measurements presented in Figure 2-33. 
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2.6 CATHODE EROSION 

A life limitation of the J-series thruster is believed to be 
baffle/pole-piece erosion and subsequent deposition of material 
onto the cathode keeper and keeper support. The ring-cusp 

thruster design eliminates the cathode baffle/pole-piece assembly 

and positions the cathode directly in the discharge plasma. 
The cathode used in the ring-cusp and J-series thrusters has 

a 0.76-mm-diameter orifice made of W-2%Th. Figure 2-35 shows a 
photograph of the cathode orifice plate after the 694 hours of 
ring-cusp thruster operation that were accumulated under this and 

a companion study.'-' The photograph suggests that for ring-cusp 
thrusters operating with mercury propellant, an exposed cathode 

with a 0.76-ram-diameter orifice experiences no significant 
erosion. 

An attempt was made to incorporate the strong magnetic field 
near the cathode orifice of the ring-cusp thruster into a 

J-series-type thruster. The intent was to explore ways of 

improving the performance and lifetime of the J-series thruster 
with minimal modification of its discharge chamber. An 

electrically equivalent J-series thruster (S/N 301-5) was 
modified to produce a "hybrid" ring-cusp configuration. The 
performance of this thruster was substandard, and, therefore, no 

further measurements or modifications were performed. A summary 
of the results of this investigation is presented in Appendix C. 

2.7 CATHODE LOCATION 

The effect of the cathode location in the ring-cusp 

discharge chamber was explored by using the movable-cathode 
arrangement that was designed and fabricated under NASA Contract 
NAS 3-21943. Figure 2-36 shows the variation of accelerator- 
electrode current with cathode position. These results show 
there is little effect of cathode location, unless it is located 
near the endwall. Figure 2-36 also shows the variation of axial 
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FIGURE 2-35. Photograph of cathode orifice after 694 hours of 
operation in the ring-cusp thruster. 
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magnetic field at the location of the cathode orifice. The t w o  

curves suggest that the magnitude of the field at the cathode 
orifice has little effect on performance, as long as the cathode 
is located downstream of the field-reversal point. The flat 

region of the accelerator-electrode-current variation suggests 
that no improvement in performance is to be expected as a result 

of positioning the cathode further into the discharge chamber. 
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SECTION 3 

ION-OPTICS TECHNOLOGY 

Earth-orbital applications of ion-propulsion technology may 
benefit from thruster operation at a lower specific impulse than 

the nominal design point of the state-of-the-art J-series 

thruster (Isp N 3000 sec). Applications such as North-South 

stationkeeping of geosynchronous communications satellites may 
also require cyclic operation, where the typical thruster duty 

cycle might be 1 hour per day. These operating requirements 

translate into new design requirements for the ion-extraction 
assembly; namely, the use of a three-grid electrode design and a 
low-thermal-mass electrode-mounting arrangement. Substantial 

progress in meeting these requirements was made under the present 

program, along with improvements to the procedures that have been 

used in the past for fabricating and assembling the J-series ion- 
extraction assemblies. 

3.1 THEBMOMECBANICAL YODELLING 

The ion-extraction assembly of the J-series thruster 
utilizes the relatively massive mounting-ring arrangement shown 

in Figure 3-l(a) for supporting the electrodes. Excellent 

steady-state performance characteristics have been demonstrated 

with this design for operation to beam currents at least as high 
as Jb = 4 A. However, under cyclic operating conditions there is 

some concern that the relatively poor thermal contact between the 

edge of the electrodes and their stiffening rings could result in 
unacceptable transient temperature distributions. The consequent 

aperture misalignment resulting from excessive nonuniformities in 
the temperature distributions could lead to undesirable beamlet 
vectoring, possibly causing direct impingement of ions onto the 

accelerator electrode. 
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8996-17R2 

ACCELERATOR GRID 

I 

a. J-SERIES DESIGN ("STANDARD") 

8998-18 A 3  

b. ADVANCED TECHNOLOGY 2-GRID DESIGN 

8998-18R4 
,DECELERATOR GRID I 

' -  -"L . 
c. ADVkNCED TECHNOLOGY 3-GRID DESIGN 

FIGURE 3-1. R i g i d  and " f l e x i b l e t t  i o n - o p t i c s  mountings.  
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The usefulness of a thermomechanical model3-' of the J- 
series ion-extraction assembly was demonstrated under NASA 
Contract NAS 3-21040. A finite-element model (designated as 
EASEZ) of the optics assembly (based on measured temperature 
distributions) indicated that under thermal loading the rigid 
post-type mounting of the accel stiffening ring could lead to 

significant deformation of the grid and a change in the 
interelectrode spacing. The same model was used to show that 
nearly uniform grid spacing could be achieved by using the single 

"flexible" supports shown in Figure 3-l(b) and 3-l(c) to mount 

the electrode-stiffening rings. Both two- and three-grid ion- 

extraction assemblies that employ this design have been 

successfully fabricated and tested under NASA Contracts NAS 
3-219433 - * and NAS 3-22474. - 

Under the present program, we extended the modelling 

initiated under NASA Contract NAS 3-21040 to examine the effects 
of eliminating the stiffening rings of a "conventional" mounting 
arrangement and mounting both the screen and accel electrodes to 

thin thermally compliant structural supports. 

The simplified electrode-mounting arrangement of Figure 3-2 
eliminates the large thermal mass of the J-series stiffening 
rings by incorporating a Itdog leg" bend into the planar edge of 
the electrodes to provide the required stiffness. The electrodes 

are mounted onto flexible box-type members that can accommodate 
thermal expansion in the radial direction, while providing 
excellent rigidity in the transverse direction. If successfully 
demonstrated, we predicted that the low-thermal-mass design would 
improve the reliability of the J-series ion-extraction assembly, 
making it suitable for cyclic operation. 

We analyzed the simplified structure of Figure 3-2 and 
showed that: 

The simplified mounting structure allows the electrodes 
to be decoupled for analysis purposes, so that 
essentially the same model can be used to evaluate all 
three grids (by using separate load cases) 
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The thin structural members that support the electrodes 
are not rigid enough to inhibit radial expansion, 
resulting in low stresses in the electrodes 

The thickness of the flexure causes the most significant 
change in stress 

The temperature distributions in the flexures are 
critical in determining the calculated deformations of 
the electrodes. 

A more detailed discussion of the analysis results are presented 
in the sections that follow. 

Several finite-element models (shown in Figure 3-3) were 
considered in performing the EASE2 analysis. The first model 
(Model 1) resulted in several points of inflection that could not 
possibly exist for the specified constraints. This discrepancy 
was attributed to the large aspect ratio (length-to-width ratio 

of the mesh, as indicated in the example of Figure 3-4) of the 
elements employed in the model and was corrected by increasing 

the number of nodes along the shell (reducing the mesh 
dimension). This modification to the original model resulted in 
a smooth profile, as shown for Models 2 through 6. 

In Models 2 thru 6, the Ti mounting plate was eliminated, so 
that the base of the double flexmember support remained fixed. 

This requires a 60% increase in the deflection beyond that which 
the flexmembers would normally experience with a mounting ring 
undergoing thermal expansion (as in t h e  o t h e r  models), with the 
major effect being a direct increase in the stress in the 
flexmember. The effects produced by the various models shown in 
Figure 3-3 are summarized below, with the results of Model 2 
taken as the baseline for comparison. 
electrode was calculated to be about 20 MPa (2.9 x lo3 psi) 
(radial) and occurs near the flex support. 

The highest stress on the 
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IT--: ------ ------ 
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-------------- 

b. MODEL 2; BASELINE 
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I 
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INCREASED TO 75% 

- - -  - - ---- -- -- 
-- -: ---e 

d. MODEL 4; ELECTRODE THICKNESS 
REDUCED 67% 

I 

--- -- - - __  
I 

- -  e. MODEL 5; "DOG-LEG" REMOVED 

I U I 

f. MODEL 6; ELECTRODES ATTACH DIRECTLY 
TO TOP OF DOUBLE FLEXMEMBER 

FIGURE 3-3. Finite-element models and calculated deformations. 
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3.1.1 Effect of the Flexmember Thickness 

Model 3 employed a flexmember with a thickness of 0.76 mm, 
or 75% increase over that used for Model 2. There was no 

significant change in the calculated radial displacements. 

However, the stiffer arm extending from the double flexmember, 
combined with differential thermal expansion between the inner 

and outer flexmembers, causes the arm to tilt upwards. This 
produces a 7.5% increase in the vertical displacement at the 

center of the electrode. 

3.1.2 Effect of Electrode Thickness 

Model 4 employed a 67% reduction in the thickness of the 
electrode within the aperture boundary, and resulted in a point 

of inflection on the shell curvature inboard of the location of 
the aperture boundary. Outboard of this point the slopes to and 
through the "dog leg" appear to be identical to those 
corresponding to the baseline configuration. The use of a 
thinner material as a means of simulating the perforated 
electrode geometry is probably more representative of the true 

deflections than the smooth profile predicted by Model 2. 

3.1.3 Effect of Removing the Dog Leg 

Model 5 has flat flanges at the edges of the electrodes, 
with the "dog leg" removed. Differential thermal expansion 

between the inside and outside flexmembers causes the extended 

arm to tilt upward, and the compliance of the flat flange to the 

upward tilt causes a 16% increase in vertical displacement at the 

center of the electrode. The flexmembers of Model 5 are 0.43 mm 
thick and undergo a 16% increase in vertical displacement, 
compared to the 0.76-mm-thick flexmembers of Model 3, which have 
a calculated strain of only about 7%. 
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3.1.4 Effect of Electrode Diameter 

The extended arm of the double flexmember support was 
removed in Model 6. This configuration was modelled by leaving 

the flexmember at the same location as in the previous models and 

enlarging the electrode flange to join the flexmember. This, in 

effect, presented a more compliant member between the "dog leg" 

and the flexmember supports (as in Model 5). In a practical 
design, the support would be located inboard, as close to the 

"dog leg" as the thruster shell structure would allow. This 

would result in deflections approaching, but (because of the 
elimination of the arm extension) not exceeding those of the 
baseline model. The net result predicted by Model 6 is a 19% 
decrease in the vertical displacement at the center of the 

electrode. 

Thermal expansion of the flex member support is included in 
all of the deflections indicated above. For Model 2, thermal 
expansion accounted for 38.5% of the vertical displacement at the 
screen center. Thermal expansion of the inboard flexmembers was 

approximately 0.2 mm for Models 2-6. 
The simplified electrode mount shown in Figure 3-2 was 

fabricated under the present program. Test results obtained with 
this promising new design will be obtained under NASA Contract 
NAS 3-23860. 

3.2 ELECTRODE-FABRICATION TECHNOLOGY 

Several improvements to grid-fabrication procedures were 
identified under NASA Contract NAS 3-23774. 
program, we continued the earlier work and reduced the improved 

grid-fabrication techniques to practice. We also formulated a 

set of detailed instructions to be followed during the 
fabrication of electrodes. Other work included an examination of 
the molybdenum materials properties that should give the best 

results for hydroforming electrodes, particulary for the decel 
electrode of three-grid ion-extraction assemblies. This latter 
work is discussed in Section 5. 

Under the present 
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3.2.1 Improvements to the Hydroforming Fixture 

Previous ~ o r k ~ - ~  described the difficulty encountered in 
hydroforming the decel electrode of a three-grid ion-extraction 
assembly and concluded that flat spots or bumps appearing on the 
surface of the hydroformed electrodes could be eliminated by 
preventing air from being trapped between the grids during the 
dishing operation. To accomplish this, we modified the 
hydroforming fixture as shown in Figure 3-5. By eliminating the 
indicated air pocket, and by providing a vent for the release of 
any trapped air, electrode fabrication has been improved to the 
point that none of the 2130 grids that have been hydroformed since 
the tooling was modified have shown any signs of non-sphericity. 

3.2.2 Improvements to the Stress-Annealing Fixture 

Following the earlier work,3-3 we modified the stress- 
annealing fixture used for standard-dish-depth, three-grid optics 
assemblies. The problem that had been encountered in the past 
was thought to be the result of differential thermal expansion 
between the molybdenum electrodes and the carpenter-steel liner 
used in the annealing fixture. Under the present program, we 
replaced the steel liner with the graphite plug and liner shown 
in Figure 3-6. Stress-relieving operations performed since the 
fixture was modified have been highly successful. 
difficulty we have encountered has been an occasional cracking of 
the graphite ring. We believe the cracked rings have been caused 
by the rapid cooldown of the hot fixture, which is accomplished 
by blowing cold gas over the fixture. Closer control on vendor 
procedures is expected to eliminate this problem. 

The only 

3 .3  EXPERIMENTAL RESULTS 

Table 3-1 lists the geometrical parameters of three ion- 
extraction assemblies that were fabricated and tested under this 
program to evaluate ion-optics performance effects related to 
aperture diameter and offset (to vector individual beamlets). 
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14629-1 R 1 

VENT FOR 
RELEASE OF 
TRAPPED AIR 

ELECTRODE 
DROP-OUT DIA. 

LOCK~NG 
IN DENTS 

FIGURE 3-5. 
hydroforming fixture for venting trapped air and preventlng 
slippage of the grid material. 

Modification to the clamping region of the 
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MOLYBDENUM GRIDS GRAPHITE PLUG 

A ,  GRAPHITE RING 

GRAPHITE LINER 

STEEL 

J L 
LI - 
STRESS ANNEALING FIXTURE MODIFIED TO PROVIDE 
GRAPHITE INTERFACE WITH MOLYBDENUM 

FIGURE 3-6. Improved stress-annealing fixture with graphite 
1 iners. 
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TABLE 3-1. Comparison of Ion-Extraction System Parameters 

G RID SET 
co15 c025 C027 

PA RAM ETE R 

APE R TU R E 
SHAPE 

NUMBER OF 
APERTU R ES 

t ~ *  ta, 'd 

d, 

dd 

MIN IMUM TOTAL VOLTAGE 
AT Jb a 2A 

ROUND HEX ROUND 

14,906' 23,191 ' 14,995' 

MIN IMUM TOTAL VOLTAGE 
AT Jb a 2A 

0.254 0.254 0.381 

1.905 1.524 1 .go5 

1.143 0.9144 1.143 

1.524 1.219 1.524 

0.183 -0.183 -0.358 

O.Oo0 O.Oo0 O.Oo0 

0.183 0.183 0.020 

1250 1250 1200 
I 

APPROXIMATE VALUE. DIMENSIONS ARE IN mm 

T 

da - ACCEL HOLE DIAMETER 
d, - SCREEN HOLE DIAMETER 

- ACCEL GRID THICKNESS ta 
t, - SCREEN GRID THICKNESS 
1 9  - SCREEN-TO-ACCEL INTERELECTRODE SPACING 

(0.584 mm NOMINAL) 
&m( - - ACCEL GRID OPEN AREA FRACTION 

6s' 

- @s -SCREEN GRID OPEN AREA FRACTION 

6S2 
S -APERTURE SPACING 
Cx - APERTURE COMPENSATION, % 

I d  - ACCEL-TO-DECEL INTERELECTRODE SPACINO 
(W.R.T. ACCEL ELECTRODE) 

(0.584 mm NOMINAL) 
t d - DECEL GRID THICKNESS 
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3.3.1 Aperture Diameter 

Previous studies have shown that screen apertures smaller 
than about 2 mm in diameter result in a reduction in perveance 
per In spite of the reduction in perveance per 
aperture, we anticipated a net increase in beam-extraction 

capacity to result from reducing the screen-aperture diameter to 

less than 2 mm and increasing the number of apertures. Grid sets 
C015 and C025 were used to evaluate the effect of reducing the 
screen apertures from 1.91 mm to 1.52 mm, while increasing the 
number of apertures from about 15,000 to over 23,000. As the 
results of Table 3-1 indicate, there was essentially no increase 
in beam-extraction capacity; apparently the decrease in current 
per aperture was approximately equal to the increase in number of 
apertures (assuming the same gap and alignment). Recent 

a n a l y ~ i s ~ - ~  and experimental  result^^'^ indicate that aperture 
alignment becomes increasingly important as size is reduced. 

We used optics set C015 to perform measurements of the 
perveance limit by spot welding a strip of 0.01-mm tantalum foil 
over a row of accel apertures on the downstream surface of the 
accel electrode (the decel electrode was removed) and then ion- 

machining through the foil by operating the thruster for a few 
hours. Foil-aperture diameters measured for different total 

accelerating voltages are shown in Figure 3-7. At a total 

voltage of 1900 V (well in excess of that corresponding to the 
perveance limit of VT 1100 V), the machined apertures are 

relatively uniform across the beam diameter and are about 60% of 
the accelerator-aperture diameter. At total voltages near the 

perveance limit, the machined aperture diamet9rs are about 90% of 
the accelerator-aperture diameter. The results of Figure 3-9 
suggest that the perveance limit occurs near the center of the 
ion optics for this (uncompensated) grid set. 

The effect of smaller aperture diameter on electron 
backstreaming limit is shown in Figure 3-8. The increase in net- 

to-total accelerating voltage ratio, R,,,, with smaller apertures 
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various radial locations and total accelerating voltages. 

Variation of ic>n-machined aperture diameter fo r  
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Variation of minimum total accelerator voltage with 
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is consistent with Kaufman’s analysis3” which relates R,,, to 

the thickness-to-diameter ratio of the accelerator apertures, 

t,/d,. 
could significantly reduce the amount of accelerator-electrode 

sputtering due to a reduction in sputter yield that would 

The ability to operate at such low accelerator voltages 

accompany the reduced ion energies. 

3.3.2 Besmlet Vectoring 

The optics set C027 (Table 3-1) was designed fo r  a net-to- 
total accelerating voltage ratio of R = 0.5, using a beamlet- 
vectoring model3’* to calculate the aperture compensation 

required to vector beamlets parallel to the thruster axis. We 
verified the effectiveness of the aperture compensation in 
achieving beamlet vectoring by measuring the thrust-loss factor, 

F,, as a function of the net-to-total accelerating voltage ratio, 
R. Figure 3-9 shows the variation of measured thrust-loss factor 
for optics sets C027 (compensated) and C015 (uncompensated). The 

thrust-loss factor for optics set C027 varies with R and has a 
maximum near its design operating point of R = 0.5. By 

comparison, the thrust-loss factor is essentially independent of 
R for the uncompensated optics set C015. 

Further insight into the results presented in Figure 3-9 can 
be obtained from the angular dispersion profiles of the ion 
beamlets obtained from ExB probe measurements. Figure 3-10 shows 
the results for optics set C015, showing that the beamlet angle 
is independent of R. Furthermore, the profiles decrease in 
height and increase in angular width as the R value is reduced. 
This behavior is a consequence of beamlet spreading that 
accompanies the increase in ion deceleration at low values of R. 

Angular dispersion profiles for optics set C027 are 
presented in Figure 3-11. These profiles also decrease in height 
and increase in angular width as the R value is reduced. 
However, the beamlet angle is strongly dependent on the R value 
for this compensated optics set. In addition, at an R value 
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accelerating voltage ratio for grid sets C015 and C027. 
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between 0.4 and 0.6 there is nearly complete beamlet vectoring 
along the lines parallel to the beam axis for  all radial 
locations (consistent with a large value of F, shown in Figure 

3-9), while for other values of R there is off-axis beamlet 
vectoring (consistent with the lower values of F, shown in Figure 

3-9). Figure 3-11 indicates the cross-over beamlet vectoring 
occurs at an R value of 0.2. 
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SECTION 4 
POWER-PROCESSOR SIMPLIFICATIONS 

A dramatic simplification (factor-of-ten reduction in parts 
count) of the power processor required to operate an 8-cm- 

diameter mercury ion thruster was demonstrated under a joint 
NASA/Hughes program aimed at reducing the complexity of ion- 
propulsion systems. '-' 
(SPPU) shown in the schematic of Figure 4-1 was built under the 
Hughes-funded program, and preliminary evaluation of the unit 
(using a laboratory-model 8-cm-diameter thruster) demonstrated 
the feasibility of the simplified approach. Under the present 

program, we investigated the startup transients and steady-state 
operating characteristics of a laboratory-model 8-cm-diameter 
thruster when operated with the SPPU. We also demonstrated that 

the SPPU could be used to successsfully operate an 8-cm-diameter 
thruster that was functionally equivalent to the Ion Auxiliary 
Propulsion System ( U P S )  flight thrusters and verified that 
steady-state performance was comparable to that obtained using a 

conventional laboratory-model power processor and test console. 

The Simplified Power Processor Unit 

4.1 STEADY-STATE AND TRANSIENT OPERATION 
The initial operation"' of the SPPU used the output of 

Resistance Temperature Devices (RTD's) to control the output of 
the discharge- and neutralizer-vaporizer-heater supplies (see 
Figure 4-1). Under t h e  present  program, w e  improved the 

performance characteristics of the SPPU by adding an external 
circuit that transforms thermocouple input into simulated-RTD 

output. By replacing the RTD's on the laboratory-model 8-cm- 
diameter thruster with thermocouples, we could sense the 

temperature at a location closer to the vaporizer and we 
eliminated a 2OoC to 5OoC overshoot in temperature that had been 
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supplies. 
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observed when the thruster was equipped with RTD's. We emphasize 

that the modification was only to accommodate the particular 
thruster setup; either RTD or thermocouple input to the SPPU is 
satisfactory, as long as the temperature-sensing elements are 
placed in close proximity to the vaporizers. 

4.1.1 Vaporizer-Temperature Optimization 
We operated the laboratory-model extended-performance Ion 

Auxiliary Propulsion System (XIAPS) thruster under steady-state 
conditions for several hours to ensure that thermal equilibrium 

had been reached. By varying the discharge-vaporizer temperature 

and recording the discharge voltage and beam current 
corresponding to each temperature, we obtained the 

characteristics shown in Figure 4-2. The results were obtained 

by increasing the temperature in the manner suggested by the 

arrows shown on the curves (we understand the hysteresis effect 

to be the result of thermal lag in the vaporizer thermocouple). 
Another representation of these results is presented as 
Figure 4-3. Both figures show that a local maximum in beam 
current exists at a flow rate corresponding to a discharge- 
vaporizer temperature of Tdv = 355OC; variations in flow about 
the optimum produces a dramatic reduction in the beam current. 
The characteristic presented in Figure 4-3 shows that the 
discharge voltage could be used as a controlled parameter 
(instead of the discharge-vaporizer temperature) to achieve 

maximum beam current. 

4.1.2 Cold-Start Behavior 
Figure 4-4 shows the vaporizer-temperature variation of the 

XIAPS thruster for a period of approximately two hours after an 
ON command was issued to the SPPU. The temperatures are seen to 

reach their reference values in a matter of a few minutes and are 
then controlled to within 0.5% of these values. 
presents the temporal variation of beam current and discharge 
voltage, showing that these parameters reach 90% of their steady- 
state values within 30 minutes of startup. The scatter in the 

Figure 4-5 
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FIGURE 4-4. 
XIAPS thruster after issuing an ON command to the SPPU. 
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data is attributed to frequent screen and accel overcurrent and 

subsequent recycling (which we believe could be reduced or 
possibly eliminated as a result of optimizing the recycle 
algorithm and circuity in the present SPPU). 

In preliminary tests in which RTD's were used to sense 
the vaporizer temperature, the reference was set to about 1 0 ° C  
lower than the value (355OC) that our steady-state test results 
indicate to be the optimum (maximizes beam current). This had 
the effect of enabling the beam current to reach its setpoint 
(Jb = 72 mA) shortly after startup, but eventually the beam 

current dropped to the steady-state value corresponding to the 
reduced temperature of T,, = 345OC (about J b  = 40 mA) .  We 
interpret this behavior in the following manner: As the 
discharge chamber heats up, propellant is liberated from the 

walls, resulting in a "flooded" condition (the vaporizers are 
operated at constant temperature) . The "effective" propellant 

flow is greater than that corresponding to the vaporizer 
temperature, and thruster operation moves to the high-flow side 
of the maximum indicated in Figures 4-2 and 4-3. As the chamber 
walls heat up and an equilibrium condition is approached, the 
effective propellant flow is reduced, and operation moves closer 
to the maximum in beam current (cf. Figures 4-2 and 4-3). With 

the previous (RTD) control philosophy, less propellant flow was 
introduced through the vaporizer, so that the effective flow 
during the thermal-transient period was lower, resulting in 

initial operation nearer the optimum-beam-current point. 
However, in this case the steady-state beam current was 

substantially below that corresponding to the maximum, since the 
reduced propellant flow places steady-state operation to the 
right of the maximum in Figures 4-2 and 4-3. 

This argument is supported by the "cold-start" test results 
of Figure 4-4. 
voltage as in Figure 4-6, we see that the initial operation 
places us on the high-flow side of the maximum-beam-current 
point, and that the temporal variation corresponds to a reduction 

With the beam current plotted versus discharge 
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in "effective" propellant flow with a resultant shift toward the 
optimum operating conditions. This transient-flow effect could 

presumably be eliminated either by preheating the discharge 

chamber, or by controlling the vaporizer flow in proportion to an 
operating parameter such as beam current or discharge voltage 
(instead of discharge-vaporizer temperature) . 

Effects similar to the one described above have also been 

observed in a 30-cm-diameter thruster, when it was brought to 
full beam current within a few minutes of discharge ignition. In 

this case, the cathode flow was regulated to maintain constant 
discharge voltage, and we observed a reduction in vaporizer 

temperature of about 100°C (from 32OOC to about 22OoC), followed 
by a corresponding increase in vaporizer temperature as the 

thruster-body temperature increased. 

4.2 IAPS-EQUIVALENT THRUSTER OPERATION 
The 8-cm-diameter thruster S/N 901 was modified to be 

functionally equivalent to an IAPS flight thruster by 
incorporating the most-essential modifications that were employed 
under the IAPS flight program to upgrade the 900-series thrusters 
to flight specifications. The modifications included replacing 

the discharge and neutralizer cathodes, the cathode pole piece 

and baffle, and the ion-extraction assembly. 
We conducted a Performance Acceptance Test (PAT) of the 

S/N 901 retrofit thruster, using the same laboratory-model power 
processor and test console that was used to test the IAPS flight 
thrusters. 
flight thrusters were followed for vaporizer calibration, cathode 
conditioning, and startup. We found that the retrofit thruster 

performs much like the flight thrusters; a comparison of the 
operating parameters for the S/N 901 thruster with those 
representative of the Cyclic Life Test thruster S/N 903 and the 
flight thrusters S/N 908 and S/N 909 is presented in Table 4-1. 

The same procedures used in acceptance testing the 
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TABLE 4-1. Comparison of the Performance 
Retrofit Thruster and several 

901 
LAB 
1 /84 

42.1 
369 
14.3 
61 
27.0 
3.89 
1.85 
4.50 
1.58 
16.4 
501 
2.78 
1.31 
2.20 
.66 
1176 
1207 
72.0 
-284 
.342 
-11 .o 
290 
86.7 
284 
5.44 
92.1 
78 
83 
228 
131.7 

901 

SPPU 
2/84 

39.0 

428 

14.4 

96 

24.6 

4 .1  

1.95 

5 .5  

1.92 

16.6 

430 

2.63 

1.24 

3.6 

1.08 

1200 
-- 

72.0 
-300 

.400 
-- 

278 
-- 

289 
-- 
-- 
-- 
-- 
-- 
-- 
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903 
LAB 
12/80 

39.7 
386 
12.7 
60 
27.0 
2.31 
1.16 
4.52 
1.64 
15.6 
500 
2.85 
1.30 
2.30 
.72 
1200 
1228 
72.0 
-300 
.231 
-11.9 
266 
86.4 
280 
4.93 
91.4 
79 
83 
223 
128.7 

908 
LAB 
12/80 

39.5 
439 
13.5 
60 
26.0 
2.46 
1.16 
4.49 
1.66 
15.8 
500 
2.98 
1.30 
2.41 
.77 
1200 
1226 
72.0 
-300 
.247 
-13.8 
294 
95.5 
280 
6.0 
101.5 
71 
75 
252 
131.4 

909 
LAB 
11/80 

39.5 
428 
13.9 
60 
25.6 
2.42 
1.16 
4.35 
1.62 
15.8 
500 
2.92 
1.30 
2.64 
.81 
1200 
1223 
72.0 
-300 
.245 
-16.0 
263 
93.9 
290 
5.8 
99.7 
72 
77 
246 
130.8 



The only notable differences in these results are a higher 
cathode-heater power, (which was necessary in order to sustain 
the discharge), and for a nominal V b  the discharge voltage and 
discharge-keeper voltage are a few volts higher than those 
typical of the flight thrusters. Performance-documentation 
results are presented in Figures 4-7 and 4-8, which show measured 
propellant-utilization efficiency and ion-production cost versus 

V6.  
26 V < Vg - < 28 V .  

These results show that the optimum Vg lies in the range 

- 
Having characterized the operation of the retrofit thruster 

using a conventional power processor, we next operated it using 
the SPPU, which uses constant-vaporizer-temperature control loops 
for controlling the mercury flow through the discharge and 
neutralizer vaporizers. During the startup, predetermined 
maximum currents are applied to both the discharge and 
neutralizer cathode heaters and vaporizers. The keeper and 

discharge voltages are also ON at this time. When the pre- 
selected vaporizer temperatures are reached, the vaporizer loops 
operate in proportional control to maintain these temperatures. 
The thruster remains in this condition until the keepers ignite. 

After the neutralizer keeper ignites, the current to the 
neutralizer-cathode heater drops to a lower setpoint (there are 
only two setpoints on each cathode-heater supply) while the 
neutralizer-keeper current remains constant. In a similar 
manner, the ignition of the discharge keeper is followed by a 
lowering of the cathode-heater current to the predetermined 
value, while the discharge-keeper current remains constant. The 
main discharge can ignite any time after the discharge keeper. 
The screen and accel voltages are applied only after the 

discharge and neutralizer keepers have ignited, the discharge has 
ignited, and the discharge voltage has dropped to less than 
VD = 50 V. There is a recycling feature of the SPPU that is 
triggered by sensing excessive screen or accel currents. 4 - 1  
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Several demonstrations verified that a beam current of 

J, = 72 mA could be obtained with the pre-selected values of 
discharge current and discharge-vaporizer temperature. Typical 

electrical measurements are presented in Table 4-1 for comparison 
with the results obtained while operating the retrofit thruster 

S/N 901 on a conventional power processor. Flow rates were not 
measured for the data corresponding to operation on the SPPU, but 
the vaporizer temperatures were about the same as those recorded 
for thruster S/N 901 when operated using the laboratory test 
console. 

During the tests conducted with the S/N 901 retrofit 
thruster, we observed that the SPPU has a tendency to undergo 
excessive power-supply recycling during thruster startup from 

ambient temperature or below. Similar results were observed in 

earlier tests that were conducted using the XIAPS thruster. In 
these tests, we determined that cold startups are characterized 

by excessive "effective" propellant flow (the sum of the 
discharge-vaporizer flow plus the propellant liberated from the 
walls), or "flooding" of the discharge chamber. In the more 

recent tests, we could successfully prevent the recycling by 

either preheating the thruster or by delaying the application of 
screen and accel voltages. The recycle feature in the SPPU 
appears to be more sensitive than that used in the IAPS power 
electronics, and it may have to be modified to enable rapid cold- 
starting without experiencing excessive high-voltage breakdowns 

between the ion-extraction electrodes. 
With the exception noted above, the operation of an ttIAPS- 

equivalent" thruster on the SPPU was quite satisfactory, and it 
appears that only minor modifications to the SPPU design are 
desirable. The only area of major concern is the constant- 
vaporizer-temperature control philosophy, which is based on the 
assumption that the calibration curves of the vaporizers remain 
constant throughout the lifetime of the thruster. This may or 
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may not be true, and if it is not, a different control philosophy 
will have to be adopted. With only a slight increase in 

complexity, the SPPU circuitry can be modified to permit active 
control of the vaporizer power to maintain the desired values of 
discharge voltage and neutralizer-keeper voltage. Application of 
the SPPU technology to inert-gas thrusters (in which the 
vaporizers are replaced by flow impedances) appears to be 
straightforward. 
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SECTION 5 

TECHNOLOGY READINESS OF THE J-SERIES THRUSTER 

Although several mercury-ion-thruster subsystems have been 

brought to flight status (SERT I, SERT 11, IAPS, and RIT lo), 
there is a pervasive perception by mission designers that 
mercury-ion-propulsion technology does not have the demonstrated 

maturity required for a primary system (i.e., mission fails 
unless system performs to specification). Some of the major 
system concerns that have been voiced are as follows: 

0 Reliability documentation is inadequate 

only limited data are available 
- test results are flawed - documentation of test results is insufficient - tests performed only on components 

qualification requirements only vaguely specified 

0 Interface specifications are not well defined 

exhaust-plume definition and contamination 
- thrust-vector location 
- control requirements 
- high-voltage effects on spacecraft 
- system-integration procedures undefined or 

undocumented 

e Technology concepts under development are too complex 
and/or too expensive 

too many parts 
- too many controls 

e Required operating time is too long 

- high reliability mandated 
- long operating or storage life mandated 
- qualification of representative flight system is 

prohibitively expensive and time consuming 
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If the concerns of the system engineer that are listed above 
are to be alleviated by technology development, the following 

tasks must be addressed: 

0 A set of design specifications must be formulated for 
all thruster-subsystem components 

- 1 if etime 
- performance 
- reliability 
- operating ranges (temperature, power, etc.) 
- interface requirements (structural, thermal, etc.) 
- integration (safety, environment, etc.) 

0 A rationale must be devised for showing compliance with 
the design specifications 

- qualification tests 
- demonstration tests and analytical projections 

0 Thrust-subsystem components must be developed to meet 
the design specifications 

A formal design specification comparable to the ones used 
for procuring chemical thrusters was not prepared as part of the 
development of the NASA/Hughes 30-cm-diameter, J-series mercury 
ion thruster. However, it has been developed to provide a 
nominal thrust of F = 130 mN at a nominal specific impulse of 
I,, = 3000 sec, and with a nominal power input of P i ,  = 2.7 kW.5-' 
The design lifetime for this thruster is L = 15,000 hours. In 

most respects, the technology of the J-series thruster is very 
mature, and no fundamental problems remain to be solved if the 
thruster is used in the manner conceived during its development. 
There are some unresolved issues of lifetime and reliability that 
have been raised in endurance tests, and these must be resolved 

before the technology can be considered fully mature. 

Acceptability of the thruster technology would also be improved 
by reducing the complexity of the hardware and/or its operation, 
and by reducing fabrication costs. Specific tasks are identified 

below to address these issues. 
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!I I 5.1 DISCHARGE-CHAMBER EROSION 
Erosion of critical thruster components by ion sputtering is 

the major life-limiting process identified in the endurance tests 
performed on 900-seriess-* and J-series5-3 30-cm-diameter 

thrusters. A secondary effect of this wearout mode is the 
deposition of the sputtered material. This deposition represents 
a reliability risk because spalling of the deposits produces 
metallic flakes that can result in pre-wearout failures 
(insulators can be short-circuited or ion beamlets can be 
deflected enough to damage the accelerator grids). 
Consequently, the major technology issue for the J-series 

thruster is baffle and pole-piece erosion and subsequent 
deposition of material onto the cathode keeper and keeper 

support. Life-test indicate that flakes can form from 
deposition in this region after relatively short operating times 

which we estimate may precipitate failures after only 10,000 
hours of operation. Potential solutions for this problem are: 

0 Identify operating conditions that reduce sputtering in 
the cathode pole-piece/baffle region 

0 Improve surface characteristics of deposition sites to 
inhibit spalling 

0 Modify magnetic circuit to eliminate the pole piece/ 
baffle. 

5.2 INSULATOR MATERIALS 
Another issue that is equally important is the specification 

of materials and design of insulators for the thruster wiring and 
mounting. In the J-series design, several types of insulating 
materials are specified; ceramic or vespel stand-off-type 
insulators and teflon-coated kapton wiring insulation. 
thermal environment of the Mission Profile Life several 
insulation failures occurred. Although the failure mechanisms 

In the 
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have not been uniquely determined, operation of the thruster in 

higher temperature environments than had been assumed in its 
design was undeniably a contributing factor in these failures. 

To have a mature design, the thermal environment must be 
specified and the ambient conditions obtained in normal thruster 

operation must be determined, so that insulator materials can be 

selected appropriate to the thermal environment. For the 
isolator insulators, the vaporizer-temperature characteristics 

must also be taken into consideration. 

5.3 OPERATING PROCEDURE 
The J-series thruster design was developed with the 

objective of continuous operation for long periods of time and 
with variable power levels (throttleable) in planetary 
exploration-type missions. It is more probable that near-term 
applications will require relatively short-term, cyclic operation 

at constant power levels for maintaining the orbits of large 
spacecraft. This type of operation places greater stress on 

cathode heaters and requires operating algorithms that optimize 
ON/OFF operation (as contrasted with variable-power operation). 
Consequently, thruster components must be modified to enable 
numerous (5000 or more) cyclic operations with fast (<15 minutes) 
start-up. This approach will also benefit from simplified 
control concepts and power-processing circuitry. 

6.4 CATHODE HEATERS 
Two types of cathode heaters have been used in the 

development of mercury ion thrusters. One type is constructed of 

coaxial conductors as shown in Figure 5-1. The center conductor 

is the heating element, and the outer sheath acts as the current 
return. Several combinations of materials have been used to 
fabricate these heaters, with the most successful combination 
being tantalum for both inner and outer conductors, and magnesium 
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oxide as the insulating material. The second type of heater is 
constructed by encapsulating the resistance-heating element in a 

ceramic insulator as shown in Figure 5-2. For this type of 

heater, the resistance-heating element has been fabricated using 

tungsten or tungsten/rhenium alloy, and the heating element has 

been encapsulated by flame spraying alumina. 

For small-diameter cathodes (0.32 cm), the encapsulated 
heaters have proven to be tractable to fabrication. This type of 

heater provides better heat transfer from the heating element to 

the cathode tube, and, therefore, requires less power to achieve 
the required temperature. On the other hand, the coaxial heater 

material cannot be wrapped around small-diameter cathodes without 

excessive deformation that results in elongation and tearing of 

the outer conductor. The impaired integrity of the coaxial 

material caused by forming small-diameter coils has produced 
relatively short heater lifetimes. 

Use of alumina-encapsulated heaters for larger diameter 
cathodes (0.64 cm or greater) is not tractable because the 
encapsulation tends to crack at normal dathode operating 
temperatures. Cracks in the encapsulation result in degraded 

heat transfer from the heating element to the cathode tube, 

requiring a higher operating temperature for the heating element 
and resulting in local "hot spots". These hot spots ultimately 
result in failure of the heater element. 

Either of the cathode-heater designs decribed above can 
provide long operating life with high reliability if the heater- 
fabrication processes are carefully controlled. In both cases, 
the required controls have been documented. However, the 

procedures used by the fabricator involve levels of skill and 
attention to detail that exceed those required for fabrication of 

most comparable commercial products. Consequently, the 
successful procurement of high-reliability cathode heaters will 
require development of a vendor (or vendors) that can implement 
the quality procedures for fabricating reliable heaters. 
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FIGURE 5-2. Encapsulated heater for 8 - c m  thruster cathodes. 
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Quality-control procedures for fabricating swaged, coaxial 

heaters were investigated by NASA-LeRC, and the results have been 

reported in the literature. ’-’ 
incorporated in the Hughes IPD’s (Inspection and Process 

Documents) that are a part of the documentation for the 
LeRC/Hughes 30-cm-diameter, J-series mercury ion thruster. Some 

of these quality-control requirements are outlined here: 

These procedures have been 

0 The tantalum tubing for the outer conductor and the 
tantalum wire for the heater element must meet 
specifications on purity and ductility (hardness) 

0 The tantalum wire for the heater element must be 
uniform and free from nicks and fractures 

0 The magnesium-oxide insulator material must meet 
specifications on purity and moisture content 

0 The environment for swaging of the heater must be 
controlled to prevent contamination of the heater 
materials by any organic or oxidizing materials 

0 Compaction of the insulator in the swaged heater 
material must meet a specification on density 

0 Welding of the inner conductor to the outer conductor 
must be performed in a manner that will not embrittle 
the materials at the joint (electron-beam or 
controlled-atmosphere TIG weld) 

0 Before coiling the heater, the swaged assembly must 
pass inspection by both infra-red scan and x-ray to 
identify any defects in the insulator (voids) or the 
weld (cracks or excessive melting) 

0 After the heater is coiled it must pass an operational 
test of 100 ON-OFF cycles with a resistance change of 
less than a specified amount. 

Thrusters fabricated with heaters made using these quality 

controls have been tested for many thousands of hours without a 
heater failure. 

Heaters that were purchased for use in technology programs 
without specifying these controls have had relatively high 
failure rates. Several of these failed heaters have been 
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examined to ascertain the cause of failure. In all of the 
heaters examined, the failure was found to be a consequence of a 
void in the insulator material. Figure 5-3 shows an example of 
this type of failure which resulted in the heater element failing 
as an open circuit. In other failures of this type, the heater 
element contacted the outer conductor to cause a short circuit. 
In all of the heaters examined, the insulator void occurred near 
the transition in the diameter of the coaxial heater material 
(provided by design to furnish a low-resistance 'Ilead" for the 

heater element). While this type of defect would have been 
detected by the quality-control procedures described above, the 
cost of these quality-control measures increases the cost of a 

swaged cathode heater by about a factor of ten. 
In a flight-hardware fabrication program, the cost of 

fabricating high-reliability cathode heaters would not be a major 
consideration since the cost of a cathode heater represents less 
than 1% of the total thruster cost. The major consideration in 

obtaining high-reliability cathode heaters is one of logistics 
rather than technology. Whereas most of the other thruster 
materials or components are readily available from manufacturers 

of commercial products, we anticipate that appreciable time may 
be required to cultivate a vendor (or vendors) for the heater 
materials and the fabrication of swaged heaters. While several 

manufacturers have the potential for fabricating high- 
reliability heaters of this type, it has been, and will probably 
continue to be, extremely difficult to obtain full vendor 
cooperation in establishing the rigorous quality-control 
procedures required in view of the relatively small quantity of 
heaters that will be purchased (i.e., hundreds, not thousands). 
Nevertheless, this is considered to be the most certain means of 
obtaining high-reliability, long-life cathode heaters for large- 
diameter cathodes. 
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FIGURE 5-3. Example of a failure that is typical in heaters 
fabricated without rigid quality control. 
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The encapsulated heaters used on the smaller diameter 
cathodes are fabricated using similar rigorous quality controls 

to ensure long life and high reliability. Again, the purity of 
materials is an essential feature, but skill (craftsmanship) in 
application of the flame-sprayed alumina to the cathode tube, and 
then in covering the heater element, is the most critical 
operation in achieving successful fabrication of encapsulated 
heaters. The attachment of the heater wire to the cathode tube 
and to the center conductor of the coaxial lead-in by electron- 
beam welding is also a critical operation. However, this 

operation is more readily documented and can become nearly an 
automatic one. 

5 . 5  ION-OPTICS FABRICATION 
A final consideration relates to identifying and specifying 

steps or procedures performed during the fabrication of ion- 
optics grids to ensure stable, reproducible operation for the 
ion-extraction assembly. Examination of grid sets fabricated f o r  
J-series thrusters S/N 5-2 thru J-10 revealed that the hole 
patterns of some grids are distorted sufficiently to influence 
the effective perveance. 
several hours of continuous operation are required to obtain 
thermal (and dimensional) equilibrium of the ion-extraction 

assembly. This type of time constant could result in problems 
caused by aperture misalignment and out-of-tolerance 

interelectrode spacing for short-term, cyclic operation. 

Modifications in grid-fabrication procedures have been proposed 
to correct the problems described above; however, the 
effectiveness of these procedures has not been fully evaluated. 
Experiments to verify the relevance of improved grid-fabrication 
procedures to J-series mercury-ion-thruster designs must be 
performed. 

Tests at NASA’s LeRC showed that 

Although the J-series ion-extraction-assembly design has 
proven to be superior, by far, to prior designs, some advances in 
fabrication and assembly procedures need to be documented to 

113 



ensure that future use of this design will produce favorable 
results. In addition to the procedures already described in the 

J-series, 30-cm mercury-ion-thruster documentation package, the 

following list of notes and procedures must be included to obtain 
reproducible results. 

5.5.1 Molybdenum Material Specifications 
In the documentation for fabrication of the J-series ion- 

extraction grids, the material is specified as low-carbon, arc- 
cast molybdenum. Molybdenum sheet is available in several other 
forms that vary in purity and ductility, and for which both the 

cost and delivery time is different. The material properties 

considered to be necessary for achieving success in hydroforming 
the ion-extraction grids are low carbon content, and high 

ductility (small grain size). Table 5-1 compares these 
properties in a qualitative manner for the available molybdenum 

types. Each type can be formed without difficulty to the 

curvature required for the J-series thruster two-grid ion- 

extraction-assembly design. Extension of the technology to three 
grids, as required for operation at lower specific impulse 
(increased thrust-to-power ratio), requires a greater elongation 

of the material in the decel grid and the properties of the 
material are more critical. The types of molybdenum listed as 
"arc-cast" and "standard pressed-and-sintered" in Table 5-1 are 
not sufficiently ductile to enable the grids to be formed in a 
manner that minimizes differential stretching between the grids 

(the forming-fixture configuration is shown in Figure 5-4) 
without fracture of the decel grid at the point of sharpest 

curvature. 

5.5.2 Application of the Photoresist Pattern 
It has been found that the dimensions of the apertures and 

the aperture patterns of the photoresist applied to the grids by 

the vendor that performs the chemical milling service may vary 

from the specifications on a given order, even though the 
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TABLE 5-1. Available Forms of Molybdenum Sheet 

CARBON CONTENT 

< 300 ppm 

W E  

arc-cast 

standard pressed- 
and-sintered 

pressed-and-sintered, 
extra annealed 

low-carbon, 
arc-cas t 

DUCTILITY 

least 

CLAMPING 
FORCE 

< 50 ppm 

< 50 ppm 

moderate 

good 

< 50 ppm best 

13045-2R 1 

HYDRAULIC FLUID / 

LOCKING 
INDENTS 

FIGURE 5-4. Modified hydroforming fixcture for three-grid 
ion optics. 
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aperture pattern has been provided before in accordance with the 

specification. Consequently, a detailed inspection of at least 

one set of grids is recommended before the grids are hydroformed. 
Specification of the aperture and aperture-pattern dimensions to 
four significant figures has produced excellent pattern 

reproducibility. 

5.5 .3  Electrode Clamping in the Hydroforming Fixture 
The fixtures used for hydroforming the grids must provide a 

means for positively clamping the edges of the grid material. In 
this manner, there is no possibility that the material could slip 
during the hydroforming process and permit the hole pattern to 

become distorted (see Figure 5-4). 

5.5.4 Stress Annealing 
Ion-extraction grids that are hydroformed using fixtures like 

the one shown in Figure 5-4 must be stress annealed to relieve 
the residual stress present at the transition between the 
spherical and planar surfaces. For the fabrication of the J- 
series ion-extraction grids, stress-annealing fixtures were 

designed that tightly hold the hydroformed grids in the desired 
configuration while they are subjected to annealing temperatures. 
These annealing fixtures were made of carpenter steel, which has 

a coefficient of thermal expansion that is sufficiently different 
from that of molybdenum to cause distortion of the grids by 
differential expansion if the grids are tightly held by the 
fixture (no slippage). By providing graphite liners for the 
stress-annealing fixture (see Figure 3-6) the grids can be 
tightly clamped so that the graphite liner maintains the 
spherical shape of the grid during stress annealing, but slips 

with respect to the differential expansion of the carpenter-steel 
support. The differential expansion between the graphite and the 

molybdenum is tolerable at the annealing temperature of 1000°C 
(measured on the outside of the stress-relieving fixture). 
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I I SECTION 6 

ION-THRUSTER RELIABILITY 

Marketing discussions with potential users of ion-propulsion 
technology invariably touch on the question of reliability; the 
designer wants to be assured that ion propulsion is at least as 
reliable as the chemical propulsion which it (typically) 

replaces. The current practice within Hughes Space and 

Communication Group is to require a qualification demonstration 
of at least 1.5 times the mission requirement. Consequently, 

even with the low-duty-cycle requirement that North-South 

stationkeeping of geosynchronous communications satellites 
imposes on a 30-cm-diameter mercury ion thruster, the 

qualification time is on the order of 10,000 hours. Therefore, 
in any preliminary planning effort the potential customer needs 

to be assured that lifetime is not an issue. 
We reviewed over sixty references dealing with ion-thruster 

and component life tests and flight tests, with the objective of 
compiling data that could be used to demonstrate the reliability 

of ion-propulsion technology to potential users. In performing 

the literature survey, we evaluated three categories; thruster 

endurance tests, component endurance tests, and thruster flight 
tests. The list of references that were used in the compilation 
are tabulated at the end of this section. The list is indexed 
according to test type, component, and related thruster size; 

with the intent that new or additional test results could easily 
be added to the data base as they become available. 

The compiled data include the accumulated number of 
operating hours and cycles, and the reasons for termination of 
testing. Table 6-1 summarizes the results, showing the number of 
life tests that have been conducted, the total number of 

operating hours, and the total number of ON-OFF cycles for each 
of the three categories. The results show an impressive number 
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TABLE 6-1. Summary of Accumulated Totals of 
Ion-Propulsion Lifetests 

Ground-Based Ground-Based Space 
Thruster Component Thruster 
Tests Tests Tests 

Tests 
Hours 
Cycles 

28 20 3 
113,300 192,200 2,700 
8,800 39,260 260 

of tests and operating hours have been accumulated under various 
completed and on-going life tests of ion thrusters and critical 
components. For example, thruster life tests have accumulated 
over 113,000 hours, component life tests have accumulated over 
192,000 hours, and flight tests have accumulated 2,700 hours. 

The bar chart of Figure 6-1 tabulates thruster life tests 
that are either ongoing or have been completed without a 
component failure. The figure shows that the demonstrated 

lifetimes of the 8- and 30-cm-diameter thrusters are 15,000 and 
10,000 hours, respectively. Figure 6-2 summarizes life tests 
that were terminated prematurely. The reasons for the test 
terminations vary, but in general they are attributed to problems 
that were not directly related to the failure of specific 
thruster components. For example, in the 5-cm-diameter thruster 

life test the ion-optics assembly developed a short resulting 
from the presence of a metal flake that had spalled from a 
surface within the discharge chamber. In subsequent revisions to 

the thruster design, the problem of metal-flake formation has 
been eliminated through appropriate selection and treatment of 
discharge-chamber components; such as covering critical surfaces 
with wire mesh, or cladding them with low-sputter-yield 
materials. The remaining causes of premature test terminations 
are attributed to failures that might have been avoided through 

the use of more-reliable vacuum facilities, or by improved 
thruster-assembly practices. 
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FIGURE 6-1. Ongoing or completed thruster life tests. 
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SECTION 7 
CONCLUSIONS 

Significant progress in advancing the understanding of 
mercury-ion-thruster systems and technology has been achieved 

under this program. Major accomplishments include the following 
key results: 

Major simplification and weight reduction of the ring- 
cusp discharge chamber. 

Improved performance of the optimized ring-cusp 
configuration; the baseline beam-ion-production cost of 
the optimized configuration was reduced to E ;  130 
eV/ion. At a discharge propellant-utilization 
efficiency of 95%, the beam-ion-production cost was 
reduced to about 155 eV/ion, representing a reduction of 
about 40 eV/ion over the corresponding value for the J- 
series thruster. 

Comprehensive Langmuir-probe surveys were conducted in 
the J-series thruster for the first time. 

Development of a volume-averaging scheme to analyze 
Langmuir probe data provided valuable insight into 
identifying the dominant plasma processes prevailing in 
the ring-cusp and J-series thrusters. Good correlation 
of the average Maxwellian-electron temperature with 
thruster performance was achieved. The outstanding 
performance characteristics of the ring-cusp thruster 
were correlated with a higher Maxwellian-electron 
temperature than that which exists in the J-series 
thruster. 

The technology of fabricating ion-extraction electrodes 
was advanced by improving materials-selection criteria, 
hydroforming and stress-relieving tooling, and 
fabrication procedures. 

An assessment of the technology readiness of the J- 
series thruster was completed; the major remaining 
technology issue is the baffle and pole-piece erosion 
with subsequent deposition of material onto the cathode 
keeper and its supporting structure. 

A simplified power processor was used to successfully 
operate an 8-cm thruster that is functionally equivalent 
to the Ion Auxiliary Propulsion System (IAPS) thrusters. 
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APPENDIX A 

VACUUM TEST FACILITY 

Testing under this contract was performed in the 3-m- 

diameter vacuum chamber illustrated in Figure A-1. This chamber 
is pumped by a combination of two liquid-helium cryopumps, an 
oil-diffusion pump, and a liquid-nitrogen-cooled cryoliner; its 
ultimate pressure is less than 5 ~ 1 0 ' ~  Pa (4~10'~ Torr). During 

thruster testing with mercury propellant, only the diffusion 

pump and the cryoliner are used. Testing with inert gases such 

as xenon is accomplished using the cryopumps and the cryoliner, 
with the diffusion pump isolated from the vacuum chamber using a 
pneumatic gate valve. The facility pumping speed for xenon is 
about 50,000 l/s. 

A graphite-covered disc located about 5 m from the thruster 
exit plane is used to collect the thrust beam. Water cooling of 
this collector allows absorption of over 10 kW of beam power, 
and the graphite coating minimizes backsputtering. 

The vacuum chamber is equipped with a wide variety of 
diagnostic equipment. A quadrupole residual gas analyzer is 
used to monitor vacuum-chamber impurities, and an optical 

monochromator is used to monitor line intensities of excited 
atoms produced in the discharge chamber. An ExB probe is used 
to measure the s i n g l y  and doubly charged fraction of beam ions 

and to measure off-axis thrust loss. 
includes near- and far-field Faraday probes for measuring the 

current density profile in the ion beam and for measuring beam- 
divergence angles. 

obtained using a computer-controlled Langmuir probe and data- 
acquisition system. 

Other diagnostic equipment 

Discharge-chamber plasma properties are 
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FIGURE A-1. Schematic of 3-m-diameter vacuum test facility. 

Thruster performance is calculated using measured elec- 

trical parameters, flow rates, and the correction factors 
derived from ExB probe measurements. Equations used in the 
performance calculations and definitions of the thruster elec- 
trical parameters are presented in a previous publication.A'' 
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APPENDIX B 

RING-CUSP THRUSTER OPTIMIZATION 

The final ring-cusp thruster configuration, whose 

performance and operating characteristics were described in 

Section 2, evolved as a result of a systematic investigation 
aimed at simplifying the original Sovey design, while at the same 

time maintaining its high level of performance. Figure B-1 
summarizes the different thruster configurations that were 
evaluated. A descriptive summary of each design modification is 
presented in the sections below. For clarity, Table B-1 lists 
the various thruster configurations and the baseline beam-ion- 

production cost measured for each configuration. 

B.l CONFIGURATION NO. 1 
This configuration is similar to the original argon-thruster 

design of Sovey, with the exception that the discharge chamber 
was scaled in length from 24 cm to 20 cm to compensate for the 
higher atomic mass (longer residence time) of mercury atoms. 

8.2 CONFIGURATION NO. 2 
This initial modification to the original ring-cusp thruster 

(Configuration No. 1) involved the removal of the cathode pole 
piece and cathode magnet ring. A comparison of the magnetic 
field with and without the cathode-magnet assembly indicated its 
effectiveness in ttpushing'l the magnetic-field contour lines 

downstream toward the ion-extraction assembly and producing a 
gradient in the magnetic field near the cathode orifice. 

Thruster operation with the cathode-magnet assembly removed 
resulted in no observed damage to the "unprotectedt' cathode, 

however the performance w a s  poorer than that achieved with 
Configuration No. 1. The cause of the performance loss was 
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TABLE B-1. Tabulation of Baseline Beam-Ion-Production 
Cost for Different Thruster Configurations. 

I 
BAS ELI NE 

E (eV/ion) 
THRUSTER CONFIGURATION NO. BEAM-ION-PRODUCTION COST 

1 140 

2 153 

3 138 

4 140 

5 145 

6 134 

7 130 

attributed to increased ion loss to the endwall. This 
speculation was supported by the observation that the net- 
electron current collected by the inner ring of magnets on the 
endwall increased by a factor of 50 with the cathode-magnet 
assembly removed. 

B.3 CONFIGURATION NO. 3 
In this configuration, the inner ring of magnets located on 

the endwall surface of the discharge chamber was rearranged to 
produce a higher axial magnetic field. 
was reconfigured to a smaller-diameter ring surrounding the 

cathode. 
configuration increased the axial magnetic field to a value that 
approached that obtained with the cathode-magnet assembly, but 
without the relatively large cathode-potential surface and mass 

associated with the original magnet assembly. 

The inner ring of magnets 

Magnetic-field measurements showed that this magnet 
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Thruster performance was improved relative to the previous 

configuration, verifying that with the cathode-magnet assembly 
removed a performance gain could be achieved with a reduced-mass 

configuration by simple rearrangemenet of the endwall magnets. 

B . 4  CONFIGURATION NO. 4 
The two corner-magnet rings were removed in this 

configuration, giving rise to an additional simplification and 
mass savings. Previous thruster measurements indicated that the 

location of the ion-production region was downstream of the 
cathode, toward the ion-extraction assembly. On the basis of 

this result, the two corner-magnet rings were removed. 

Thruster performance was essentially unchanged from the 
previous configuration, verifying that the two corner-magnet 

rings were sufficiently far removed from the ion-production 
region to have an influence. 

B . 5  CONFIGURATION NO. 5 
In this configuration, the position of the downstream magnet 

ring was changed so that it was located next to the anode pole 
piece. The intent was to confine the magnetic field closer to 

the chamber boundary in the region near the ion-extraction 
assembly. 
chamber indicated a weaker field strength near the screen 

electrode, and there was a significant degradation in thruster 

performance compared to the previous configuration. Electrode- 
current measurements indicated that the performance degradation 

was due to a net-ion loss to the sidewall/endwall (most likely 

the pole piece) surface. 

Magnetic-field measurements within the discharge 

B . 6  CONFIGURATION NO. 6 
The downstream magnet ring was rotated by 90'. In light of 

the previous result of degraded thruster performance, it was 

speculated that magnetically shielding the anode pole piece with 

a l'rotatedtl magnet ring might reduce the net-ion loss to the 
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anode pole piece if this was the cause of the performance loss in 
the previous configuration. Magnetic-field measurements 

indicated improved field confinement near the pole piece. 

There was a significant improvement in both thruster 
performance and beam-profile uniformity. Electrode-current 

measurements indicated a very small net-ion loss to the 
sidewall/endwall surface. 

8.7 CONFIGURATION NO. 7 

A second layer of magnets was added to the endwall-magnet 
ring. The intent was to "push" the ion-production region further 

downstream toward the ion-extraction assembly, thereby improving 

thruster performance. Measurements of the magnetic-field 
distribution indicated that the magnetic-field contour lines were 

located further downstream. In addition, the contour lines were 

better confined along the chamber boundary. 
and beam uniformity were improved. 

The optimum position of the midstream magnet 

Thruster performance 

ring, and the minimum wall thickness required for optimum 

thruster performance, were studied under a related programB' . 
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APPENDIX C 

HYBRID THRUSTER 

One of the goals of this program was to improve the 

understanding of mercury-ion-thruster systems with consideration 

toward improving the technology and reliability of the state-of- 
the-art J-series thruster. The cathode-lifetime results obtained 
for the ring-cusp thruster (cf. Section 2) were promising and 
suggested that a potential solution to the erosion and deposition 

problem that exists in the cathode-pole-piece enclosure of the J- 
series thruster might be to eliminate this structure altogether. 

Therefore, we explored the feasibility of incorporating the 
attributes of the ring-cusp design into the J-series thruster. 

Thruster S / N  301-5, which is electrically equivalent to a J- 
series thruster, was modified to produce a hybrid ring-cusp 

configuration by removing the conventional cathode pole piece and 

baffle, and by installing a single ring of SmCoS magnets around 
the sidewall and a double ring of SmCos magnets around the 
cathode on the endwall. The resulting configuration is shown in 

Figure C-1. For comparison, the J-series chamber configuration 
is also shown. Magnetic-field measurements revealed that the 

resulting contour lines had the attributes of the ring-cusp 
design. In addition, the resultant configuration had 
approximately the same m a s s  as the baseline J-series design. 

However, thruster performance with this configuration was 
poor ( e i  > 350 eV/ion). Figure C-2 presents an iron-filings map, 
showing that the field lines emanating from the cathode orifice 
intersect the screen grid near the center. This is believed to 
have the effect of confining the electrons emitted by the cathode 
to the central-core region of the discharge chamber, much like in 
early axial-field discharge chambers. The poor thruster 

performance is believed to be a result of electrons reaching the 
bulk of the discharge-chamber volume only as a result of energy- 
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depleting collisions. This argument is supported by the 
observation (that was made after the test) that the upstream side 

of the screen grid had a bright-appearing region that extended 
over the center part of the grid (a diameter of about 7 to 
10 cm), suggesting the existence of an intense plasma in this 
region. 

A Langmuir-probe survey revealed that the plasma in the 
hybrid thruster was characterized by low electron temperature and 
plasma potential. The results also indicated that the plasma was 
confined to the region near the chamber axis, confirming our 
speculation based on the iron-filings map and the appearance of 
the screen grid. 
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